+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
Vendor View

Optimising predictive maintenance

News

The benefits of predictive maintenance (PdM) are already well established. Improved productivity, lowered maintenance cost and a reduction in unplanned downtime by up to 50 per cent are just a few of the advantages offered. But how do you achieve a truly optimised sensor system? Here, Ross Turnbull, Director of Business Development and Product Engineering at ASIC design and supply company Swindon Silicon Systems explains.

Most predictive maintenance systems are fairly simple in construction. The data collection is performed by one or more smart sensors, placed strategically throughout the plant to gather data on individual machinery or processes. The sensors then communicate this data to a central control system for analysis by specialist software, to quickly find potential issues and identify actionable insights before problems have chance to occur.

Sensor selection
To make the most out of a predictive maintenance system, we need to begin with the initial collected data. Choosing the right sensor type for the application in ensuring that faults are picked up quickly and accurately, with ample notice given for proper repair.

One common choice of sensor for PdM applications is the accelerometer. Able to determine acceleration in one or more axes, these sensors can provide tilt and inclination measurements as well as impact recognition functionalities. Conversion of the acceleration data into vibrational information offers additional insights — in fact, vibration changes are often considered as one of the earliest indicators of a potential fault.

By comparing near real-time vibrational information with historical data, it’s easy for the sensor system to identify a potential issue and flag it up for investigation. This, combined with the relative low cost and compact size of a MEMS accelerometer, makes it an ideal choice for PdM systems.

But there are times when a vibration sensor alone may be unable to register the fault. In this case, it may be preferable to use another sensor type, either in conjunction with an accelerometer or as a complete replacement.

Temperature sensors, for example, could be an appropriate sensor type to use to detect any temperature changes — typically an increase — caused by excessive loads or start/stop procedures. Where bearings have become worn or damaged, friction is likely to increase, which again can cause a detectable temperature change. Left unchecked, this can cause additional damage to equipment and can lead to more inefficient processes.

Optimising electronics
Once a suitable sensor type has been selected, there’s still more than can be done to deliver a sensing system that is truly a cut above the competition. This can be done through the optimisation of the electronics at the very core of the sensor.

Many traditional sensor types will collect analogue values. Before these can be communicated to other equipment in the sensor system for analysis, they must first be converted into a compatible digital format. These processes of signal conversion and communication may be performed by one or more standard ICs. But what if your require a more optimised predictive maintenance sensor?

Manufacturers should instead look to an application specific IC, or ASIC. This chip has been designed exclusively for an individual customer or application, allowing it to offer far more functionality than a standard off-the-shelf chip.

Within the predictive maintenance context, this could look like a chip with sensor-specific processes and conditioning, allowing for more accurate signal conversion with reduced noise. And the flexibility of custom design allows for the removal of additional unneeded components, allowing for investment into performance where it matters. As a result, the ASIC can offer more precise sensor data, often within a smaller footprint.

As the manufacturing industry seeks to implement more advanced technologies, it’s crucial that sensor technology continues to evolve. Optimising sensor systems right from chip level guarantees a predictive maintenance system that offers the very latest in sensing capabilities, and its users with all the benefits of a more efficient, proactive maintenance system.

Tektronix and EA Elektro-Automatik offer expanded power portfolio
83% of supply chains can’t respond to disruptions in 24 hours
CMC Microsystems and ventureLAB sign MoU
Renesas introduces FemtoClock 3 timing solution
Mycronic receives order for SLX mask writer
Rapidus reveals US subsidiary and opens Silicon Valley office
Infineon introduces news MOTIX motor gate driver IC
Brewer Science unveils Smart Warehouse Monitor System
Symposium to showcase breakthroughs in microelectronics
CHIPS for America promotes over $50 million funding opportunity
SEMI University launches in-person courses
Samsung Electronics to establish Texan semiconductor ecosystem
Semiconductor chips drive innovation in AI and industries
Semiconductor equipment sales slip to $106.3 billion
Mouser Electronics receives 2023 Global Best Service Distributor of the Year Award from Diodes Incorporated
Quantum processor testing and measurement facilities up and running
Semiconductor Research Corporation announces 2024 call for research
Trend report unveils the future of circular electronics
PCIM Europe 2024: highlights and new records
PI contributes to technology node development
QP Technologies achieves ANSI/ESD S20.20 Certification
Renesas commences operations of Kofu Factory
TRI wins three Innovation Awards
Tektronix and recently acquired EA Elektro-Automatik offer expanded power portfolio
NEDO approves Rapidus’ FY2024 Plan and Budget
SK hynix signs Advanced Chip Packaging agreement
Renesas expands Quick Connect Studio
Infineon and Amkor deepen partnership
AP&S establishes site in the USA
Dracula Technologies selected by STMicroelectronics
RAIN RFID data to transform corporate sustainability initiatives
Integrated AMR replaces reed switches and hall effect sensors
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: